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A system is subject to shocks;& Fach shock weakens the system and
makes it more expensive to run) Zt is desireable to determine a replace~
ment time for the system. Boland and Proschan (4 ) consider periodic
replacement of the system and give sufficient conditions for the existence
of an optimal finite period, assuming that the shock process is a non-
homogeneous Poisson process and the cost structure does not depend on
time. Block, Borges and Savits (3) establish similar results assuming that
cgfgxstructure is time dependent, still requiring that the shock process

Y

iélnonhomogeneous Poisson process. We shoq)via a sample path argument,

that the results of ( 3) and ( 4) hold for any counting process

whose jump size is of one unit magnitude. 4{%*"’“
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1. INTRODUCTION AND SUMMARY.éA system is subject to shocks which
RN

\
. ») !
cause the system to deteriorate. In &eferences [ 1] ~T ZIX/fEEE- I

distribution properties of such systems are discussed for different types
of deterioration processes. At best these processes are right continuous
Markov processes. Our interest in this paper is to tackle a related but
different problem: we assume that the normal cost of running the system
is \a, per unit of time and that each shock to the system increases the
running cost by\ c' per unit of time. The cost of completely replacing
the systemtigyfééi_?zhe system is to be completely replaced at times

T, 2T, },.,». Su?P)replacement policies are known as periodic replacement
policieé.:pgﬁz.;Zlue T 1is known as the period of the policy. In
practice, reliability analysts are often asked to find the optimal value
of the period, that is to say the value of T that minimizes some
functional of the cost. Such functionals are normally taken to be the
long-run average cost per unit of time or the discounted total cost.
Boland and Proschan [4 ] treat the case where the shock process is a
non-homogeneous Poisson process. Their proofs depend. heavily on the fact
that a non-homogeneous Poisson process can be transformed to a homogeneous

Poisson process via a non~-random time transformation and on the probabil-

istic properties of the Poisson process. Block, Borges and Savits (3 ]

establish similar results when the cost structure is time dependent. They
also assume that the shock process is a nonhomogeneous Poisson process.

We show via a sample path argument that the results of Boland and Proschan, B

Block, Borges and Savits hold for any counting process whose jump size L

is a unit magnitude. ::;
2, OPTIMAL PERIODIC REPLACEMENT FOR A SYSTEM SUBJECT TO REPEATED

SHOCKS WITH TIME INDEPENDENT COST. T

-9

A

For t 20 let .;ﬁ

N(t) = Number of shocks that the system is subject to during the 'iﬁ

AP a e
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interval ([0, t] and let N = (N(t),t 2 0). Throughout we assume that
the jumps of N are of one unit magnitude. Let (tn) be the sequence of the
Jump times of the process N.
Observe that the total cost of running the system per period for a
given realization of the sequence (rn) is equal to

aT + c(-;z =T+ e+ e(N(T) -1) (TN(T)-tN(T)—l)

+ cN(T) (T - )) + c

™N(T o

which can be written in the form

aT + ¢ ST N(t) dt +c .
o (o]

From Fubini's theorem it follows that the expected total cost
of running the system per period is given by

2.1) aT+c [T M(t) dt + c,
0

where M(t) = expected number of shocks in [0, t] amd M is assumed
to be a continuous function on {0, «).

From standard renewal theory argument it follows that the long-run
average cost per unit of time is given by

A(T) = [aT + ¢ fT M(t) dt + co] /T.
0

2.2 REMARK. Boland and Proschan [ 4] in their lemma 1.1 and Theorem
1.2 exploit the probabilistic behavior of the non-homogeneous Poisson

process to prove (2.1) when the shock process N 1is a non-homogeneous

Poisson process.

Observe that A(T) 1is a differentiable function of T and that

the first order derivative of A at T is given by

A" (T) = [c /T (M(T) - M(t)) dt - c,] /12,
0
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Moreover

T - M(p)) dt
0

is positive and increasing,

lim A'(T) = -, and 1lim A(T) = 1lim M(T).
T 0 T+ o T+ o

We seek to find the value of the periodic replacement time that minimezes

the lon-run average cost of running the system per unit of time and we refer

to such a value by the optimal periodic replacement time. The proof of the

following theorem follows from the above observations.

2.3 THEOREM. The optimal value of the periodic replacement time always

exists and is equal to the unique solution of the integral equation

M) - M(t)] dt = colc.
0

Moreover it is finite if and only if

1lim IT [M(t) ~ M(t)] dt > cole.

T+ 0
2.4 EXAMPLE. (Nonstationary Pure Birth Shock Models) Assume that shocks
occur according to a nonstationary pure birth process as follows: Shocks
occur according to a Markov process; given that k shocks occured in
[0, t], the probability of a shock occurring in ([t, t + A) is equal to

lk(t) = 0(A), while the probability of more than one shock occurring

in [t, t + o) = o(A). Observe that in this case the shock process N
is a nonstationary Markov process. However, the pair N* (t) = (N(t), t)
form a stationary Markov process. Throughout we will assume without loss

of generality that N(O0)

1. For any point (k, t) in the state
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the symbol E%*% stands for the expectation

space E = {1, 2, ...} xR

+
' . when the process at time t 1s in state k. For any bounded function
N defined on E the infinitesimal generator is defined by
- Af(k,t) = lim {[E%" £(N_.8) - £(k,0)]/(e-1))

ll s+t
- It is well know that

t E1,0
0

." "

gl:0 EN,,E) - £(1,0) = f E(N_,5) ds.

If £ 1s such that for any (k, t) in E, f£f(k, t) = £f(k) for some

f defined on {1, 2, ...}, then it is easy to see that

Af (k,t) = Ak (t) [fk+1) - £f(k)].

RN ) BARSGERE J U

In particular if f(k, t) = k for each k in {1, 2, ...}, then

Af(k, t) = Ak(t)

&

Ei; and therefore

S 1,0. t 1,0

E_ CETVON() - 1 fo E" (g (8))d8

-

E;: i.e.,

N t 1,0

{L M(t) -1 = fo E (AN(B)(s))ds.

ﬁ}

i Thus

o T _ - (T (T .1,0

FL Io (M(t) M(t)] dt Io .rt E ()\N(s)(s)) dsdt

| = T s B0 O, (s) ds.

| 0 N{s)
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1f E(AN(S)(S)) - 0(5-2) as s + », then from Theorem 2.3 it
follows that the optimal value of the periodic replacement time exists
and is finite.

In particular if for k=1, 2, ...
(B = kA (t)

then we have that

M(t) -1 = % a(s) M(s) ds.

0
The above equation has the solution

f; A(s) ds
M(t) = e

and

EQyeey () = ME) exp (fy A(s) ds)

which is clearly of order 8-2 as s+« assuming that A is an
increasing function in s. 1In this case the optimal value of the
periodic replacement policy exists and is finite. If A(s) = 1, then
the optimal value of the periodic replacement time is the unique finite
solution of the integral equation

eT(T-l) = (co -c) /e

Moreoever if A(t) = ¢t then the optimal value of the periodic replace-

ment policy exists and is equal to [ln ((c° + c)/c)zl %

2.5 REMARK. The non-homogeneous Poisson process case discussed in [ 4]

is a special case of the model discussed in Example 2.4 with

e mdmarinndamdinn o S . L . L




xk (t) = A(t) for each k=1, 2, ... for some A defined on R+.

2.6 EXAMPLE. Assume that the shock process is a renewal process with a
renewal function M(t). Suppose that the common distribution function
of the interarrival times is absolutely continuous with respect to the

Lebesque measure and has a derivative function m(t) = 4 M(t). It
dt

follows that if m(t) = O(t-z) as t + o then the optimal value of
the periodic replacement policy exists and is finite. For example if the
interarrival times have finite mean, then m(t) = 0(l) as t + =

and hence the optimal periodic replacement policy exists and is finite.

3. OPTIMAL PERIODIC REPLACEMENT FOR A SYSTEM SUBJECT TO REPEATED

SHOCKS WITH TIME DEPENDENT COST STRUCTURE. In this section we

discuss a model similar to the one discussed in 62 but with general costs
that depend on the number of shocks and the time at which shocks occur.
For t 20 let N(t) = Number of shocks the system is subject to during
[0, t]. The shock process N = (N(t), t 2 0) 1s assumed to have

jumps of size one almost everywhere; let (tn) be the sequence
describing the jump times of the shock process N. The cost of operating
the system per unilt of time in [ti,ri + 1) is ci(u), i = 90,1, ...,
and u in R+. T 2 0. The normal cost of running the system is8 a per
unit of time and the cost of completely replacing the system is o The
system is to be completely replaced at times T, 2T, ... and the shock
process resets at zero at each of these replacemnts. By the same argument
discussed in §2 the expected total cost of running the system per

period is given by

aT + IT E cN(t) (t) dt + <,
0
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and the long run average cost of running the system per a unit of time

T
is equal to ({aT + fo E cN(t) (t) de + <, 1/T. Define h(t) = E(CN(t)(c)]'

The following theorem is the analogue of Theroem 2.3 for this type of

problem.

3.1 THEOREM. If h 1is continuous, increasing, then the optimal value
of the periodic replacemnt time exists and is the unique solution of the

integral equation
T
S7 [h(T) - h(t)] = co/c -
0

Moreover it is finite if and only if

1m ST (D) - h(t)] dt > co/ec.
T+« O
Above we only considered the problem of determining the optimal
periodic replacement time over an infinite time horizon. Now we
consider the finite horizon problem. We would like to find a replacement
time T that minimizes the total expected cost over the interval
[0, t). We assume the same cost structure discussed above. Let
H(u) = S/ h(s) ds. For a period T the total expected cost in [0, t)

0
is equal to

at + m [H(T) + cO] + H(s - uT) 1if mI <t < (ml)T,

K(T) =
t at +m H(T) + (m - 1) <, if mT = t.

3.2 THEOREM. If B(u) 1s a continuous function on [0, t], then
Kt(') is continuous on ([0, t] except possibly at the points

t, t/2, t/3, ... and is right continuous at these points.
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:w 3.3 THEOREM. Assume that h(u) 1is a continuous increasing function
' on [0, t]. Then Kt(T) is minimized on [0, t] at one of the points

t, t/2, t/3, ... .

-I 3.4 REMARK. Theorems 3.2 and 3.3 are established in [3] when the

shock process is a non-homogeneous Poisson process.

o
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